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INFLUENCE OF THE SHOCK LAYER ON THE VISCOUS DRAG 

OF STAR-SHAPED BODIES WITH PLANAR SIDE PANELS 

G. I. Shchepanovskaya and V. A. Shchepanovskii UDC 533.6.013.12 

The ratio of the wave drag determined by the intensity of the corresponding shock layer 
and the viscous drag due to surface friction is practically clear for three-dimensional bodies 
of concave cross section, but for star-shaped configurations some further development is neces- 
sary. Calculations using linear theory [i], from which we see that the wave drag of a 
star-shaped body is less than that of a body of revolution of equivalent length and volume, 
only serve to stress the desirability of such a study. 

For a fixed length of a configuration with planar side panels the wave drag is deter- 
mined by the relative thickness, and depends slightly on the number of petals [2, 3]. As the 
thickness decreases, for unchanged body length and number of petals, and for a fixed volume, 
the wave drag decreases, the viscous drag increases, and the size of the petals increases, lead- 
ing to a considerable increase of the washed surface area [4]. The external inviscid flow for 
the boundary layer on the configuration surface is the flow behind the bow shock wave (the 
shock layer). In calculating the viscous drag coefficient one must consider each petal as a 
flat plate with a skewed leading edge [2, 5, 6]. The friction drag is determined by integrat- 
ing the local coefficient over the surface. 

In this paper we investigate the influence of the shock layer on the boundary layer char- 
acteristics and the friction drag. We calculate the friction coefficient as a function of the 
incident stream parameters and the shape geometry. The wave and viscous drag coefficients 
are compared. 

i. We consider supersonic flow over a star-shaped body, with uniform flow over the pla- 
nar side panels. The unperturbed flow velocity U is directed along the body axis. The shape 
geometry is fully determined by giving the linea~ size D (the diameter of the cone of equiv- 
alent length and volume) and three dimensionless parameters: ~, the elongation (ratio of the 
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length L of the star to D); r, the ratio of the diameter of the circle inscribed in the midsec- 
tion to D; and n, an integer parameter giving the number of petals. It follows from the def- 
inition of the parameters that r < i, while the quantity ~ = r/(21) describes the relative 
thickness of the configuration. 

An individual petal of the star is a three-dimensional analog of a planar wedge, from 
the viewpoint of gasdynamic structure [7]. Then the pressure on the washed surface for a 
given Maeh number M is given by the relation [8] 

P:t 2~ 2 
t U2 ~ + ~ + ---v,: ( 1 . ! )  y Poo o~ zMg 

where K is the adiabatic index, and ~ is a root of the equation 

~ a + ~  l + - - f - M %  + -- = 

In accordance with this model we can find the distributions of density, temperature, 
and velocity in the shock layer: 

P--~= ~+~ �9 ( 1 . 2 )  
p~ ~(1=~) '  

r, [2 ML- + #)] +2 0 + f)]. 
. . . . . . . . . .  2 ~ --, (1o3) 
r~o (• + I) 2 (I + ~ ) M~ 

M~ B.+B T-7' (1.4) 

where quantities with the subscript ~ refer to the corresponding parameters of the unperturbed 
flow. 

The wave drag of the configuration, taking account of Eq. (i.i), has the form 

2~ x~ 2 + ~$-~' (1o5) 

2 voo j oooM 

which is determined only by the thickness ~ = r/(2X) and does not depend on the number of rays 
(SM is the area of the base of the configuration). In calculating the wave drag in Eq. (1.5) 
we assume a vacuum at the edge of the base. 

This approximate model describing the viscous flow of Eqs. (1.1)-(1.4) gives an exact 
solution, allowing for the nonlinear interactions of [8] for the Mach number of the incident 
flow: 

Mi = (i + 4~%) (l + 4r~Pr ,~ •  q~ = 7 tg 3F" ( 1 . 6 )  
4~'2~ ( t  -- ~ 7 J  r2~) - 9. 

E q u a t i o n  ( 1 . 6 )  g i v e s  a s u p e r s o n i c  i n c i d e n t  s t r e a m  f o r  

r ~ < 2 / [ ( •  + 1 ) ~ ] , ~ 2 > ( • 2 1 5  

Taking account of the dependence of ~ on the number of petals, we obtain the conditions for 
the existence of Eq. (1.6), independent of n: 

r2 < _  2 . 

I : ~ + t  .~ 1" 
8 L i - ~ ,-~ (a) J 

(1o7) 

2. The friction drag of the wetted surface of a star-shaped body with planar side 
panels can be calculated on the assumption that each side panel ABC (Fig. i) is washed like 
a plate with a skewed leading edge by a supersonic stream with velocity U l of Eq. (1.4) in 
the direction of the internal rib CB. The distribution of the gasdynamic quantities at the 
boundary layer edge is determined from the inviscid flow of Eqs. (1.1)-(1.4). 
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The panel of the petal ABC is divided into elementary bands of width dzi (see Fig. i). 
If there is no interaction of the flows between bands the laminar boundary layer of the i-th 
band is given by the equations 

( Ou Ou) dP 1 O (O.u) O ( p u )  O(pv) _.0~ 

~--I u ~ 

@ = T + ---7- --if, Pl = pBT, ~t = ~o (T/To)m, 

where u and v are the components of the velocity vector on the axes x and y, respectively; 
the y axis is directed perpendicular to the plane of the panel x, z; p is the dynamic vis- 
cosity; and u0T0 are the corresponding parameters of the adiabatically stagnated flow. The 
Prandtl number is determined from the specific heat Cp and the thermal conductivity a: Pr = 
pCp/O. 

The boundary conditions for velocity and temperature on the washed surface, on the assump- 
tion that the panel is thermally insulated, have the form u = v = 0, aT/ay = 0, and u = UI, 
T = T I at an infinite distance from the surface. The quantities with subscript 1 are found 
by solving the inviscid problem of Eqs. (1.1)-(1.4). 

The solution of this problem is well known [9] for Prandtl number equal to i. The fric- 
tion stress as a function of the coordinate x of the i-th band is determined by the relation 

m - - 1  

band; and x > xi'. 

au) t U~A t T~(x)= ~ = y p ~  1 1=~-fi~=,,, (2.1) 

t 
Rex P lUl (x - -x i ) ;  x i '  i s  t h e  a b s c i s s a  o f  t h e  s t a r t  o f  t h e  i - t h  =W 

For a turbulent boundary layer, following the results of [i0], we can write the friction 
stress of the i-th band in the form 

1 
I ---- 

Tw(X) = -~  PlUrAl5 Rex 5. ( 2 . 2 )  

Subsequently, expressions (2.1) and (2.2) are considered simultaneously: 

�9 ~ (x) = ~ plU~Alh He~ 1/h ( 2 . 3 )  

(k = 2 c o r r e s p o n d s  t o  l a m i n a r  f l o w ,  and k = 5 c o r r e s p o n d s  t o  t u r b u l e n t  f l o w ) .  

The length of the i-th band is given by the quantity xi" - xi', where xi' and xi" are, 
respectively, the coordinates of the start and end of the band. If we introduce the quantities 
S A = SAD 2 [the area of the triangle ABC (see Fig. i)] and a = aD = DX/I +---$-~ [the length of 
the side BC (the internal rib of the configuration)], then for the length of the i-th band 
we obtain the expression 
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The friction drag of the i-th band is obtained by integrating Eq. (2.3) over the length 

tt 

_A xi 

Allowing for Eq. (2.4) we have 

1 1 

�9 1 
L 2 x a  \ a -- z i  X>-~--~-piUiAih\  ~l / i - - T  dzi. 

By integration over z we find the viscous drag of the entire surface of the triangular panel 

ABC: 

28A 
1 1 -'5- I )1: 

- - - - 7 -  z 
i -- --~- 

1 i 1 

I--T2-- T 

1 
w__ 

| t l  2k2SA (PlUIDIk 
- ( 2 k - - ~ ) ( k - - t ) \  ~ :  ] 

dz 

The side surface of the entire configuration consists of 2n identical triangles ABC and 

is S, = 2nSA. For the viscous drag coefficient we find 

Cf  
2nX F 

y o~U~Su 

1 1 

Using expressions for the gasdynamic quantities in the shock layer, Eqs. (1.2)-(1.4), 
and taking account of the relation between the speed of sound and the temperature (c:/c) = 
CT:-TT , we finally obtain for the viscous drag coefficient 

cF = A:kA2n~ - ~  (t + ~ ) - ~  2k~ S. Re ~,, 
( 2 k - - l ) ( k - - t )  S~ 

~_: ~ - :  ~(~ +m)-: ( 2 . 5  ) 

where ReD = p~U~D/~ is the Reynolds number based on the parameters of the unperturbed flow; 
as the linear dimension we take the diameter of the equivalent cone. Conversion in Eq. (2.5) 
to Reynolds number based on the configuration length L is effected by means of the formula 

ReL = XReD. 

The coefficient A1k refers to the viscous solution of Eq. (2.3) and accounts for the com- 
pressibility of flow in the boundary layer, and the coefficient A2k accounts for the influence 
of the shock layer. For the laminar boundary layer k = 2 and Table 1 shows numerical values 
of the coefficients as a function of the incident stream Mach n~unber for the configurations 
X = 2, r = 0.5, n = 4, K = 1.4, m = 0.76, ReD = 6.5"104 , M: is the Mach number for the flow 

549 



1o.c~- 
o,7 

o,5 

~3 

0,I 

10-c~. 

f 

M~2 f f _... 

' I 5.  *A . 

Fig. 2 

5 A 

Fig. 3 

/ . . ~ "  

I 5 A 

TABLE i 

M~ M1 A ~  A1~ A22 AI2A~2 ~ 

0,6i877 
0,58682 
0,55895 
0,53553 
0,51583 

0,6272i 
0,59791 
0,57276 
0,55215 
0,535i2 

i,06ii2 
i,t8637 
i,29458 
1,39908 
i,50380 

2 
3 
4 
5 
6 

1.74 
2164 
3,48 
4,27 
5,02 

Fig. 4 

0,66554 
0,70934 
0,74i48 
0,77250 
0,8047i 

in the boundary layer of Eq. (1.4). The quantity A~ AI~A22=O.664(ITm_~_ZM~)(m-I)/~f~_4~ de- 

scribes a corrected coefficient in Eq. (2.5) when there is no shock layer, i.e., the external 
flow for the boundary layer coincides with the unperturbed stream. In this case, M l = M , 

Am2 = i. 

3. Figures 2-6 show calculated drag of star-shaped configurations for laminar flow in 
the boundary layer, k = 2, as a function of the geometry parameters and the flow conditions. 
In the calculations we" assumed < = 1.4, m = 0.76. 

Figure 2 shows the calculated viscous drag coefficient from Eq. (2.5) for a star-shaped 
configuration with r = 0.5 and four petals, as a function of the shape elongation % and the 
incident stream Mach number. The solid lines correspond to Reynolds number ReD = 6.5.10 ~, and 
the broken lines to ReD = 6.5"105. With increase of % the friction drag increases, since 
there is an increase in the relative wetted surface. The dependence of the friction drag 
on the incident stream Mach number is more complex. Up to a certain value of % the friction 
drag increases with increase in the Mach number, but the opposite is true for more elongated 
configurations: A smaller viscous drag coefficient, as in Eq. (2.5), corresponds to a larger 
incident stream Mach number. 

Figure 3 shows the results of an analogous calculation for the same values, but without 
accounting for the influence of the shock layer on the formation of the viscous flow, i.e., 
A22 = 1. It can be seen that the qualitative dependence of cF on M is the same as in Fig. 
2 for the larger elongations (% >> 1). Consequently, the dependence of the viscous drag on 
incident stream Mach number in Fig. 2 is due to the influence of nonlinear processes on flow 
formation in the shock layer behind the bow shock. For the larger elongation values (% >> l) 
the relative configuration thickness ~ = r/2% is small and the flow in the shock layer, Eqs. 
(1.2)-(1.4) (the external flow for the boundary layer) differs insignificantly from the in- 
cident stream, the quantity A22 = i and the qualitative dependence of CF on M for large % 
(see Fig. 2) is the same as in Fig. 3. 
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Figures 4-6 show the calculated flow, allowing for the shock layer A2~ ~ i, for laminar 

boundary layer conditions. Figure 4 shows the dependence of CF on the geometry parameters r 
and I for four-petal configurations with NeD = 10 5 and incident stream Mach numbers of 2, 4, 
and 6. For a fixed elongation I the viscous drag increases with decrease of r, since when 
the configuration volume is held constant the petal size is large for small r, and, there- 
fore, the wetted surface S, is large. The value of elongation % for which there is a change 
in the qualitative dependence of the viscous friction drag on the Mach number is displaced 
toward smaller ~, with decrease of r. The intensity of the shock layer in Eqs. (1ol)-(1.4) 
is determined by the value of ~. It can be seen from the calculations in Figs. 21 and 4 that 
there is a change in the qualitative dependence of c F on M for ~ = 0.06; therefore, for thin 
configurations with ~ ~ 0.05 we can neglect the influence of the shock layer on the viscous 
flow, i.e., put M I = M and A2k = 1 in Eq. (2.5). 

Figure 5 shows a comparison of the wave drag, Eq. (1.5), and the friction drag, Eq. 
(2.5) for ReD = 6~ ~ and M~ = 4. The coefficients are given on a single scale. The 
solid lines show wave drag curves for r = 0.2-0.6 as a function of the elongation. The 
broken lines show the calculated viscous drag for configurations with number of petals n = 
7, and the dot-dash lines show the same thing for n = 4. As follows from Eq. (1.5), the wave 
drag does not depend on n, and the conditions at the outer edge of the boundary layer are 
the same for n = 4 and 7. The difference in the viscous drag coefficients for n = 4 and 7 
is determined by the area of the wetted surface, which is proportional to n. With decrease 
of r the viscous drag contribution becomes significant, even for four cycles. This contribu- 
tion increases with increase of the configuration elongation ~, and for I ~ 3 the viscous 
and wave drag values are on the same order. With increase of r the wave drag has the oppo 2 
site tendency, since the relative thickness ~ = r/2% decreases. 

Figure 6 shows the wave drag Cx = cw + cF (solid lines), where cw and cF are calculated 
from Eqs. (1.5) and (2.5), respectively, as a function of the number of cycles for an elonga- 
tion of % = 1.3 and incident flow parameters M~ = 4, ReD = 2.7"106. The total drag depends 
slightly on the number n, since for ~ = 1.3 the main contribution is the wave drag, Eq. (1.5), 
which does not depend on n. However, for r = 0.4, this dependence on n is noticeable because 
of the value of cF, Eq. (2.5). 

The points on Fig. 6 show the experimental values of Cx, from [2]. For r = 0.6 and 0~ 
there is satisfactory agreement between the calculated and experimental values. ]For r = 0.4 
the theory overestimates the total drag by about 5%. The base pressure was assumed to be 
zero in the calculation (solid lines). The broken lines in Fig. 6 show the values of total 
drag, allowing for the base pressure in analogy with [ii], which gives a correction of Acx = 
-0.022 for the configurations examined. The experimental points lie above the broken lines, 
in a band whose width decreases with increase of the incident stream Mach number M~. 

We note that the configurations examined satisfy the conditions (1.7) and, therefore, 
Eq. (1.6) is satisfied. The approximate model for calculating the shock layer, Eqs. (I.I)- 
(1.4), and the boundary layer, Eq. (2.1), will give an exact solution for the incident stream 
Mach number, Eq. (1.6). In particular, for r = 0.6 and I = 1.3, this Mach number is 3.6. 
In Fig. 6 the calculation was made for M = 4.0, i.e., the values for r = 0.6 are close to 
exact. 
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The elongated configurations with g ~ 0.05 (k > 5, r < 0.5) the influence of the shock 
layer on the viscous drag is insignificant, and it can be calculated from the unperturbed 
flow at the outer edge of the boundary layer [4]. For k < 5 and r > 0.3, the main contribu- 
tion to the total drag comes from the wave drag, although even for 2 s k & 5 and 0.2 & r 
0.5 the viscous drag can be on the same order. 

The authors thank V. G. Dulov for his interest in the work and for discussions. 
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